Learning Linear Classifiers Sensitive to Example Dependent and Noisy Costs
نویسندگان
چکیده
Learning algorithms from the fields of artificial neural networks and machine learning, typically, do not take any costs into account or allow only costs depending on the classes of the examples that are used for learning. As an extension of class dependent costs, we consider costs that are example, i.e. feature and class dependent. We derive a cost-sensitive perceptron learning rule for non-separable classes, that can be extended to multi-modal classes (DIPOL) and present a natural cost-sensitive extension of the support vector machine (SVM).
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملPerceptron Based Learning with Example Dependent and Noisy Costs
Learning algorithms from the fields of artificial neural networks and machine learning, typically, do not take any costs into account or allow only costs depending on the classes of the examples that are used for learning. As an extension of class dependent costs, we consider costs that are example, i.e. feature and class dependent. We derive a costsensitive perceptron learning rule for nonsepa...
متن کاملObtaining calibrated probability estimates from decision trees and naive Bayesian classifiers
Accurate, well-calibrated estimates of class membership probabilities are needed in many supervised learning applications, in particular when a cost-sensitive decision must be made about examples with example-dependent costs. This paper presents simple but successful methods for obtaining calibrated probability estimates from decision tree and naive Bayesian classifiers. Using the large and cha...
متن کاملTheory of Optimizing Pseudolinear Performance Measures: Application to F-measure
State of the art classification algorithms are designed to minimize the misclassification error of the system, which is a linear function of the per-class false negatives and false positives. Nonetheless non-linear performance measures are widely used for the evaluation of learning algorithms. For example, F -measure is a commonly used non-linear performance measure in classification problems. ...
متن کاملEfficient classification of noisy speech using neural networks
The classification of active speech vs. inactive speech in noisy speech is an important part of speech applications, typically in order to achieve a lower bit-rate. In this work, the error rates for raw classification (i.e. with no hangover mechanism) of noisy speech obtained with traditional classification algorithms are compared to the rates obtained with Neural Network classifiers, trained w...
متن کامل